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Abstract
We discuss and analyse the Morita approximation for a number of different
models of quenched random copolymer localization at the interface between
two immiscible liquids. We focus on two directed models, bilateral Dyck
paths and bilateral Motzkin paths, for which this approximation can be carried
through analytically. We study the form of the phase diagram and find that the
Morita approximation gives phase boundaries which are qualitatively correct.
This is also true when a monomer–interface interaction is included in the
model. When this interaction is attractive it can lead to separation of the phase
boundaries, which is also a feature of the quenched problem. We note the
existence of non-analytic points on the phase boundaries which may reflect
tricritical points on the phase boundaries of the full quenched average problem.
In certain regions of the phase plane this approximation can be extended to the
self-avoiding walk model.

PACS numbers: 05.50.+q, 05.70.Fh, 61.25.Hq, 64.60.Cn, 82.35.Gh, 82.35.Jk

(Some figures in this article are in colour only in the electronic version)

1. Introduction

A random copolymer is a polymer with at least two types of monomers distributed at random
along the polymer chain. We shall be concerned here with random copolymers with exactly
two kinds of monomers, which we call A and B. We write χi = A if the ith monomer is of type
A and χi = B if it is of type B. The χi are independent random variables and the probability
that a monomer is A is p. Suppose that we have two immiscible liquids α and β, which we
refer to as oil and water, respectively, for convenience. Monomers of type A prefer to be in
the oil phase and monomers of type B prefer to be in the water phase. At high temperatures
the polymer will delocalize into one of the two bulk phases to optimize the entropy of the
system while at low temperatures it will cross the interface frequently to optimize the energy,
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Figure 1. The qualitative form of the phase boundaries of the quenched average localization model
with p = 1/2 and c = 1.

in which case we say that the polymer is localized at the interface. For convenience we fix
one end of the polymer in the interface.

One needs an underlying model for the conformational properties of the polymer
chain. Various models have been considered including random walk (Maritan et al 1999),
directed walk (Bolthausen and den Hollander 1997, Biskup and den Hollander 1999,
Orlandini et al 2002) and self-avoiding walk models (Maritan et al 1999, Martin et al 2000,
Madras and Whittington 2003, James et al 2003). Regardless of the chosen model we have a
lattice and a hyperplane dividing it into two half-spaces. We call the hyperplane the interface
and the two half-spaces oil and water. Label the vertices of the n-edge walk i = 0, 1, . . . , n

and colour each of them (except the zeroth vertex) A with probability p and B with probability
1 − p. Given a colouring χ = {χ1, χ2, . . . , χn} write cn(vo, vw, vi |χ) for the number of
n-edge walks with colouring χ having vo vertices coloured A in the oil, vw vertices coloured
B in the water and vi + 1 vertices in the interface. We define A(χ) (and similarly B(χ)) to be
the number of vertices coloured A (and similarly B) by χ . Define the partition function

Zn(a, b, c|χ) =
∑

vo,vw,vi

cn(vo, vw, vi |χ)avobvwcvi , (1.1)

where a, b and c are the parameters associated with the interaction of various types of vertices
with oil, water and the interface3. We are interested in the behaviour of the quenched average
free energy

κ̄(a, b, c) = lim
n→∞〈n−1 log Zn(a, b, c|χ)〉, (1.2)

where the angular brackets denote the average over all possible colourings.
When the paths are self-avoiding walks on Z

d a number of results are available about the
qualitative nature of the phase diagram (see figure 1). For c = 1 there are two delocalized
phases Doil and Dwater in which the walk is delocalized into oil and water, respectively. The
free energy is then given by (Martin et al 2000, Madras and Whittington 2003)

κ̄(a, b, 1) = κd + p log a (1.3)

3 We note that the variables a, b and c are Boltzmann factors associated with interaction parameters α = log a, β =
log b and γ = log c.
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Figure 2. An example of a bilateral Dyck path (left) and a bilateral Motzkin path (right).

in Doil and

κ̄(a, b, 1) = κd + (1 − p) log b (1.4)

in Dwater, where κd is the connective constant4 of Z
d . In the localized phase (where there is a

positive density of vertices in the interface)

κ̄(a, b, 1) > κd + max[p log a, (1 − p) log b]. (1.5)

It is known that there are phase boundaries (where the free energy is singular) between
the localized phase and Doil and between the localized phase and Dwater, and that these
phase boundaries meet (only) at the origin. The order of the phase transition is not known
rigorously (except between Doil and Dwater at (a, b, c) = (1, 1, 1) where it is first order)
but numerical evidence (Causo and Whittington 2003) suggests that the localization phase
transition is second order in the third quadrant of the (log a, log b) plane and higher than
second order in the first quadrant. It is not known where the change from second to higher
order occurs but the origin is a reasonable guess. In this paper, we find a remnant of this
behaviour in the Morita approximation which agrees with the location of the change of the
order of the transition being at the origin.

When c > 1 the situation is somewhat different. It is known that there is a number c1 � 1
such that, for all c > c1, the two phase boundaries no longer share a common point and a
weak upper bound is known for c1 (Madras and Whittington 2003). Nothing is known about
the order of the localization transition when c > 1.

Handling the quenched average free energy (1.2) is extremely difficult, even for simple
path models such as directed walks. It is known (Orlandini et al 2002) that the annealed
approximation (where the average of the logarithm of the partition function is replaced by the
logarithm of the average) gives qualitatively wrong results for the phase diagram when c = 1.
A partial annealing treatment, using an idea due to Morita (1964) (see also Mazo (1963)
and Kühn (1996)), in which the average fraction of vertices coloured A is fixed at p, gives a
phase diagram in which the phase boundaries have the correct qualitative shape. However,
the behaviour in the localized phase is not faithful when a, b > 1. This treatment predicts a
difference in behaviour between the first and third quadrants (in the (log a, log b) plane) of the
localized phase which is consistent with a change in the nature of the transition at the origin
in the quenched average system.

In this paper, we extend this treatment to c �= 1 to derive bounds on the locations of the
phase boundaries and we also attempt to find information about where the orders of the phase
transitions may change. We introduce bilateral Dyck paths in section 2 and bilateral Motzkin
paths in section 3. Examples of these objects are given in figure 2. In section 4, we discuss
the homopolymer phase diagrams of these models.

In section 5, we introduce the annealed and Morita approximations for a general lattice
model of a copolymer and in section 6 we apply these techniques to the bilateral Dyck and
Motzkin path models. These techniques can be extended (formally) to the full self-avoiding
walk model, but since we do not have sufficiently detailed information about the homopolymer

4 We follow the definition of the connective constant given originally by Hammersley (1957) which means that κ is
a reduced free energy. Often it is confused with the growth constant, µ = eκ .
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model we cannot derive precise phase boundaries in the Morita approximation. This is
discussed in section 7.

2. A bilateral Dyck path model

In this section, we consider a Dyck path model for the underlying configurational properties
of the polymer. We define a directed path to be a walk on the square lattice Z

2 whose edges
are the vectors (1,±1). A Dyck path is a directed path which starts at the origin, has no
vertices with negative y-coordinate and whose last vertex is in the line y = 0. A bilateral
Dyck path is a directed path starting at the origin whose last vertex is in the line y = 0. That
is, a bilateral Dyck path can cross the line y = 0. The restriction that the last vertex lies in the
axis simplifies the combinatorics but does not change the thermodynamics of the model; the
free energies are the same.

Let dn be the number of Dyck paths with n edges, and define d0 = 1. Define the generating
function of Dyck paths as

D(z) =
∑
n�0

dnz
n. (2.1)

This generating function satisfies the relation

D(z) = 1 + z2D(z)2 (2.2)

which follows from the factorization of Dyck paths shown below.

D(z)
D(z) D(z)+=

Hence,

D(z) = 1 − √
1 − 4z2

2z2
. (2.3)

We note that these objects always contain an even number of edges and so frequently they are
enumerated according to their half-length (z2 �→ z in the above generating function).

To keep track of the number of vertices we can write the generating function D(z, v)

where z is conjugate to the length and v is conjugate to the number of vertices, and we have
D(z, v) = vD(zv) since each Dyck path with n edges has n + 1 vertices. In a similar way
we can count bilateral Dyck paths keeping track of vertices with y > 0, y < 0 and y = 0, by
the generating function BD(z, a, b, c) where z is conjugate to the length, a is conjugate to the
number of vertices with y > 0, b is conjugate to the number of vertices with y < 0 and c is
conjugate to the number of vertices with y = 0. By a similar factorization (see, for example,
Orlandini et al (2002)):

BD(z, a, b, c) = 1 + z2c[D(z, a) + D(z, b)]BD(z, a, b, c) (2.4)

so that

BD = 2ab

2ab − ac − bc + ac
√

1 − 4z2b2 + bc
√

1 − 4z2a2
. (2.5)

BD is singular when z = z1 = 1/2a, when z = z2 = 1/2b and when z = z3, corresponding to
the situation when the denominator of BD is zero. When z1 is dominant the system is in Doil,
when z2 is dominant the system is in Dwater while when z3 is dominant the system is in the
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localized phase. These three singularities determine the phase behaviour for the homopolymer
model.

The singularity z3 only occurs in a certain region of the (a, b, c)-space. This is discussed
in Orlandini et al (2002). As z3 is the solution of

2ab − ac − bc + ac
√

1 − 4z2b2 + bc
√

1 − 4z2a2 = 0 (2.6)

and, since a, b and c are non-negative and the square root terms are non-negative, z3 only
occurs when

b � ac

2a − c
. (2.7)

We note that the above generating function also has singularities at negative z values;
however, one can also show that the negative singularities are never dominant over the positive
singularities. Also only real positive singularities can give real free energies and so all other
singularities are considered non-physical.

3. A bilateral Motzkin path model

One disadvantage of the above polymer model is that the walk cannot lie in the interfacial line
y = 0. To overcome this problem, one can allow a third kind of edge in the direction (1, 0).
This gives rise to a family of directed paths which are known as Motzkin paths. Like Dyck
paths, they can be simply factored as follows:

K(z)
K(z) K(z)

K(z)

+

+

=

where K(z) is the generating function of Motzkin paths counted by the number of edges.
Hence, K(z) satisfies

K(z) = 1 + z2K(z)2 + zK(z) (3.1)

and so is given by

K(z) = 1 − z − √
(1 + z)(1 − 3z)

2z2
. (3.2)

Again to keep track of the number of vertices we form the generating function K(z, v) =
vK(zv), where v is conjugate to the number of vertices in the path.

Similarly, if one considers the bilateral version of Motzkin paths one obtains the
factorization of the generating function BK :

BK(z, a, b, c) = 1 + z2c[K(z, a) + K(z, b)]BK(z, a, b, c) + zcBK(z, a, b, c). (3.3)

This can then be solved to give

BK(z, a, b, c) = 2ab

2ab − ac − bc + bc
√

(1 + za)(1 − 3za) + ac
√

(1 + zb)(1 − 3zb)
. (3.4)

This generating function has six singularities with respect to z, only three of which are real
and positive and therefore physically relevant. Two of these singularities are branch cuts from
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Figure 3. The phase diagram for the Dyck path model at c = 2/3 (left) and c = 3/2 (right).

the square roots at z = z1 = 1/3a and z = z2 = 1/3b. The other, z = z3, is a simple pole
where the denominator of the above expression is zero and so is the solution of

2ab − ac − bc + bc
√

(1 + za)(1 − 3za) + ac
√

(1 + zb)(1 − 3zb) = 0. (3.5)

Since a, b, c and the square root terms cannot be negative, a solution to this equation, and
hence the corresponding pole, can only exist when

b � ac

2a − c
. (3.6)

We note that this inequality is the same for the bilateral Dyck path model.

4. The homopolymer phase diagram

The behaviour of the generating functions of the above models is determined by their
dominant singularities. A change in the dominant singularity expresses itself as a change
in the stable phase of the model. The phase boundaries are the loci of points at which the
radius of convergence is determined by two or more dominant singularities. For example, at
(a, b, c) = (1, 1, 1) the three physical singularities of the Dyck and Motzkin path generating
functions coalesce and are codominant. Since we know the positions of the singularities for
the above two models we can readily find the phase boundaries (see, for example, Janse van
Rensburg (2000) and Orlandini et al (2002)).

In figure 3 we plot the phase diagram of the homopolymer Dyck path model at c = 2/3
(left) and c = 3/2 (right). Note that these diagrams are not translates of each other.

The corresponding phase diagrams for the Motzkin path and self-avoiding walk models
are qualitatively the same, though the boundaries that delineate the localized phase are different
in the three models (see section 7 for a discussion of the self-avoiding walk model). The point
at which the three phase boundaries meet is identical for both Motzkin and Dyck path models
and is given by a = b = c. We believe that this is also true for self-avoiding walks on the
hypercubic lattice. The best we can prove is that it happens at (a, b, c) = (a, a, c†) where

a � c† � a exp(2κd − κd−1 − sinh−1 cosh κd). (4.1)

In three dimensions this bound is approximately a � c† � 1.63a and in two dimensions it is
approximately a � c† � 2.1a. These bounds follow from results of Hammersley et al (1982)
on the location of the adsorption transition for self-avoiding walks at a penetrable surface.
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5. The annealed and Morita approximations

The overall forms of the homopolymer and quenched average copolymer phase diagrams
(in figures 1 and 3) are quite different. Consequently, the homopolymer system does not
adequately model the behaviour of the quenched average copolymer system. Unfortunately,
even for directed models, such as those considered above, the quenched average free energy
appears to be intractable (Bolthausen and den Hollander 1997, Biskup and den Hollander 1999,
and Orlandini et al 2002). Consequently, we must consider approximations to the quenched
system.

Perhaps the simplest approximation that one may consider is the annealed system, in
which the order of application of the expectation and the logarithm is reversed in the definition
of the average free energy. That is, the limiting annealed free energy is given by

κa(a, b, c) = lim
n→∞ n−1 log〈Zn(a, b, c|χ)〉. (5.1)

The geometric–arithmetic mean inequality shows that this is an upper bound on the quenched
average free energy.

The following argument shows that the expectation of the partition function can be simply
related back to the homopolymer partition function. The annealed partition function can be
written as

〈Zn(a, b, c|χ)〉 =
∑

χ

Pr(χ)
∑
ω∈�n

aUoil(ω|χ)bVwater(ω|χ)cWi(ω), (5.2)

where for a given walk ω in the set, �n, of walks of length n and colouring χ , Uoil(ω|χ) is the
number of vertices of type A in the oil, Vwater(ω|χ) is the number of vertices of type B in the
water and 1 + Wi(ω) is the number of vertices of either type lying in the interface. (The extra
term comes from the fact that the zeroth vertex is always fixed in the interface.) Since the
colouring is identically and independently distributed (iid) we only need to know the number
of vertices coloured A in each of the phases, and not their positions. Therefore, we can rewrite
the above equation in terms of the numbers of walks with given numbers of vertices in each of
the oil, water and interface. Let cn(u, v,w) be the number of walks of length n with u vertices
in the oil, v vertices in the water and w vertices in the interface (excluding the zeroth vertex).
Of the u vertices, uA may be coloured A in

(
u

uA

)
ways, and similarly for the vertices in the

other phases. This leads to

〈Zn(a, b, c|χ)〉 =
∑
u,v,w

∑
uA,vB

cn(u, v,w)

(
u

uA

)
puA(1 − p)u−uA

(
v

vB

)
pv−vB (1 − p)vB auAbvB cw.

(5.3)

Summing over uA and vB gives

〈Zn(a, b, c|χ)〉 =
∑
u,v,w

cn(u, v,w)(pa + (1 − p))u(p + (1 − p)b)vcw

= Zn(pa + (1 − p), p + (1 − p)b, c). (5.4)

This implies that the phase diagram of the annealed system is a simple linear transform
of the homopolymer phase diagram, and so does not adequately approximate the quenched
average phase diagram.

To understand why the annealed approximation is inadequate, one needs to examine the
proportion of vertices of types A and B. In the quenched case, the expected fraction of A

vertices is fixed at p, while this is not assured in the annealed model. In fact, one finds that
in the Doil region of the phase diagram, the fraction of A vertices goes to 1 as a → ∞. The
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Morita approximation (Morita 1964, Orlandini et al 2002) avoids this problem by restricting
the annealing process so that the mean fraction of vertices coloured A is fixed at p.

Following the above reasoning, we can write down an expression for the expectation of
the partition function with an additional variable, L, acting as a Lagrange multiplier to enforce
the Morita condition:

〈Zn(a, b, c;L|χ)〉 =
∑

χ

Pr(χ)
∑
ω∈�n

aUoil(ω|χ)bVwater(ω|χ)cWi(ω)LA(χ)−np

= L−npZn(paL + (1 − p), pL + (1 − p)b, c(pL + (1 − p))). (5.5)

The variable L counts the number of vertices of type A, regardless of which phase they lie in,
minus np. This means that walks with the expected number of vertices of type A are weighted
by L0. We are then able to choose L to force the mean fraction of vertices coloured A to be p,
and this value of L depends on a, b and c.

The mean fraction of vertices coloured A is then

1

n
〈A(χ)〉n =

∑
χ Pr(χ)

∑
ω∈�n

A(χ)aUoil(ω|χ)bVwater(ω|χ)cWi(ω)LA(χ)

n
∑

χ Pr(χ)
∑

ω∈�n
aUoil(ω|χ)bVwater(ω|χ)cWi(ω)LA(χ)

= 1

n
L

∂

∂L
log〈Zn(a, b, c;L|χ)〉 + p, (5.6)

where the additional term p comes from the fact that L does not count the number of A

vertices, rather it counts the number of A vertices minus np. Hence, in the limit n → ∞ the
fraction of vertices coloured A is determined by the radius of convergence, zM

c (a, b, c;L), of
the generating function

M(z, a, b, c;L) =
∑
n�0

〈Zn(a, b, c;L|χ)〉zn

= B(zL−p, paL + (1 − p), pL + (1 − p)b, c(pL + (1 − p))), (5.7)

where B(z, a, b, c) is the generating function of the homopolymer localization model. This
expression is true for many models including Dyck paths, Motzkin paths and self-avoiding
walks.

In the limit n → ∞, we require that the mean fraction of vertices coloured A is p, and so
we choose the value of L that satisfies

0 = −L
∂

∂L
log zM

c (a, b, c;L). (5.8)

Since the Morita generating function is simply related to the homopolymer generating
function by a change of variables, we can similarly relate zM

c to the radius of convergence, zH
c ,

of the generating function B:

aH �→ paL + (1 − p) bH �→ pL + b(1 − p) cH �→ c(pL + (1 − p)), (5.9)

so that

zM
c (a, b, c;L) = LpzH

c (paL + (1 − p), pL + (1 − p)b, c(pL + (1 − p))), (5.10)

where we have used the subscript H to denote the variables of the homopolymer system.
In the next section, we give the details of the calculation of the phase diagram for the

Motzkin path model in the Morita approximation for general c. The corresponding results for
Dyck paths for c = 1 can be found in Orlandini et al (2002). The extension to general c is
similar to that of Motzkin paths.
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6. The Morita approximation for Motzkin paths

In order to apply the Morita approximation to the Motzkin path model, we need to determine
as a function of a, b and c the value of L that satisfies equation (5.8). For a given value
of (a, b, c), the value of L is determined by the dominant singularity of M. The dominant
singularity also determines the ‘physical’ behaviour of the model.

The analysis of the homopolymer model showed the existence of three physical
singularities—corresponding to three distinct phases:

zH
1 = 1/3a → the Doil phase

zH
2 = 1/3b → the Dwater phase

zH
3 = the solution of equation (3.5) → the localized phase.

Equation (5.7) shows that the generating function of the Morita model is really that of
the homopolymer model with transformed variables. This allows us to analyse the Morita
approximation by mapping it back to the homopolymer model. Equation (5.10) shows that
the above singularities become the following singularities in the Morita approximation:

zM
1 = Lp/3(paL + (1 − p))

zM
2 = Lp/3(pL + (1 − p)b)

zM
3 = Lp × (solution of (3.5) after the substitutions of (5.9)).

When zM
1 is dominant, we satisfy the Morita condition, equation (5.8), by setting L = 1/a.

This implies that zM
1 = 1/3ap and κ = log 3 + p log a and hence the system is in the

delocalized phase Doil.
Similarly, when zM

2 is dominant, equation (5.8) implies that L = b, and so z2 = 1/3b1−p

and κ = log 3 + (1 − p) log b. The system is in the delocalized phase Dwater.
If zM

3 is dominant, equation (5.8) can be satisfied, but the resulting value of L is a
complicated algebraic function of a, b and c. This shows that there is a positive density of A

vertices in the oil and water as well as in the interface, and so constitutes a localized phase.

6.1. The delocalized phase

Let us explore the phases of the Morita approximation by determining the points (a, b, c) where
zM

1 is the dominant singularity. In order to satisfy the Morita condition we must set L = 1/a.
Some care must now be taken—while the dominance of zM

1 does imply that L = 1/a, it is not
the case that L = 1/a forces zM

1 to be dominant over the other two singularities. We determine
the phase boundary of Doil by finding the values of (a, b, c) which keep zM

1 dominant when
L = 1/a. In Orlandini et al (2002), this was done by direct examination of the singularities of
the Morita generating function. However, here we do so by mapping the Morita model back
to the homopolymer model. This approach affords us greater generality and will later enable
us to say something about the corresponding self-avoiding walk model.

When L = 1/a, the Morita generating function is given by

M(z, a, b, c; 1/a) = B(zap, 1, p/a + (1 − p)b, c(p/a + (1 − p)))

= B(zap, 1, bH , cH ), (6.1)

where we use the subscript H to denote variables of the homopolymer model. Equation (5.10)
implies that we can show that zM

1 is the radius of convergence of M by examining the radius of
convergence of B(zap, 1, bH , cH ). We now need to confirm that the homopolymer generating
function at the point (1, bH , cH ) is dominated by the singularity zH

1 which implies that the
point (1, bH , cH ) lies in the Doil phase.
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From this point on we give the details of the calculations only for the case p = 1/2 in
order to simplify the discussion. All the calculations can be carried out for general p and we
show some results for p �= 1/2.

Consider the phase diagrams of the homopolymer model sketched in figure 4. Whether or
not a point (1, bH , cH ) lies inside the Doil phase depends on the value of cH . There are three
cases we need to consider: cH � 1, 1 < cH < c∗

H and cH � c∗
H , where c∗

H is the minimum
value of c in the homopolymer model for which the third quadrant of the (log a, log b) plane
is free of any phase boundaries.

When cH � 1 all points (1, bH ) for bH < 1 lie within Doil. Using the mappings in
equation (5.10) we may map these inequalities in the homopolymer variables, bH and cH , to
inequalities in the Morita variables a, b and c:

0 < cH � 1 ⇒ c

2 − c
� a < ∞,

0 < bH < 1 ⇒ 0 < b < 2 − 1

a
.

(6.2)

In figure 5 we plot the region in the (log a, log b) plane bounded by these inequalities for two
values of c. The part of the curve b = 2 − 1/a to the right of the line a = c/(2 − c) is part of
the phase boundary of Doil. In order to determine the remainder of the boundary, we have to
consider cH > 1.

Consider now the case 1 < cH < c∗
H and the homopolymer phase boundary intersects

the negative log b axis at the point 0 < b∗
H (cH ) < 1 (see figure 4, bottom left). Similar

inequalities to those above still hold, but they are now dependent on the value of b∗
H (cH ).

1 < cH < c∗
H ⇒ c

2c∗
H − c

< a <
c

2 − c

0 < bH < b∗
H ⇒ 0 < b < 2b∗

H − 1

a
.

(6.3)
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Figure 5. In the case p = 1/2 and cH � 1 we show the region, R1, bounded by the inequalities
(6.2) for c = 4/5 (left) and c = 3/2 (right). The curve is b = 2 − 1/a and the vertical lines are
a = 2/3 (left) and a = 3 (right).
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Figure 6. In the case p = 1/2 and 1 < cH < c∗
H we show the region, R2, bounded by the

inequalities (6.3) for c = 3/2. In the same figure we also show the region, R1, corresponding to
the inequalities (6.2) for cH � 1. We note that the diagram is similar for c < 1, but now R1 and
R2 meet at a < 1.

In figure 6, we plot the region, R2, of the (log a, log b) plane bounded by the inequalities (6.3)
for Motzkin paths when c = 3/2. Note that the value of b∗

H is a function of cH = c(a + 1)/2a

and depends on the underlying model. For Motzkin paths one can evaluate this function:

b∗
H = cH (3 − 2cH )

c2
H − 3cH + 3

. (6.4)

From this we see that c∗
H = 3/2. Performing a similar analysis for Dyck paths one finds that

c∗
H = 2 and the following expression for b∗

H :

b∗
H = cH (2 − cH )

c2
H − 2cH + 2

. (6.5)
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Figure 7. The boundaries of the delocalized phases for p = 1/2 and c = 2/3 (left), c = 1 (centre)
and c = 3/2 (right). The non-analytic points in the boundaries are marked.
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Figure 8. The boundaries of the delocalized phases for p = 3/4 and c = 5/6 (left), c = 1
(centre) and c = 13/10 (right). The non-analytic points in the boundaries are marked, and the line
log b = 3 log a is drawn as a guide to the eye.

Finally, when cH � c∗
H there is no value of bH such that the homopolymer model

is dominated by the singularity zH
1 at aH = 1. Hence, the Morita approximation is not

dominated by zM
1 and our choice of L = 1/a is invalid.

The phase Doil is the union of the two regions defined by the inequalities (6.2) and (6.3).
That is, Doil = R1 ∪ R2. The phase Dwater can be found by (a, b, L, p) ↔ (b, a, 1/L, 1 − p)

symmetry. When both R1 and R2 exist they meet along the line a = c/(2−c). The intersection
of this line with the boundary of Doil defines a point where the phase boundary is non-analytic:

(a, b) =
(

c

2 − c
, 3 − 2

c

)
. (6.6)

Hence, if c > 2 then R1 does not exist, while if c < 2/3 then R2 does not exist. For general p
the non-analytic point on the phase boundary is given by

(a, b) =
(

cp

1 − c(1 − p)
,
c(2 − p) − 1

c(1 − p)

)
. (6.7)

And similarly if c > 1
1−p

then R1 does not exist, and if c < 1
2−p

then R2 does not exist.
In figure 7, we show the phase boundaries of the delocalized phases at various values of

c when p = 1/2. In figure 8, we show the corresponding phase boundaries for p = 3/4.
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Figure 9. The localized phase for the Morita approximation at c < 1 (left) and c > 1(right). We
note that the localized phase is separated into two regions which we refer to as L1 and L2. The
Morita approximation predicts a new phase boundary separating L1 and L2.

6.2. The localized phase

The case c = 1 for Dyck paths was studied previously by Orlandini et al (2002). They found
that in the third quadrant of the (log a, log b) plane there was a localized phase with a positive
density of vertices in the interface. This agrees qualitatively with the results of Biskup and den
Hollander (1999), who derived rigorous results for the path properties of a quenched average
model of localization closely related to the Dyck path model we study here.

In the first quadrant of the (log a, log b) plane the Morita approximation does not give
a faithful representation of the localized phase of the quenched average problem. While it
does predict a phase in which there is a positive density of A vertices in the oil and a positive
density of B vertices in the water, it does not predict a positive density of vertices in the
interface. This is attributed (Orlandini et al 2002) to the fact that the Morita condition can be
satisfied by placing half the vertices in the oil and colouring them A, and placing the other
half of the vertices in the water and colouring them B. This means that the walk need not
cross the interface often in order to satisfy the condition that mean fraction of A vertices is
p. In contrast, in the case of a quenched colouring we find many short runs of As and many
short runs of Bs. In order for the walk to maximize its energy by placing many of the As in
the oil and many of the Bs in the water, it must cross the interface a positive density of times
(Biskup and den Hollander 1999).

We have analysed the case c �= 1 and find similar results, but with a significant new
feature. We find a curve (that does not pass through (0, 0, log c)) which joins the Doil and
Dwater boundaries at the non-analytic points and separates the localized phase into two regions.
We refer to the south-west region as L1 and the north-east region as L2 (see figure 9)

We find that L1 is a true localized region, in that there is a positive density of vertices in
the interface. On the other hand, in L2 the density of vertices in the interface is 0; this is an
artefact of the Morita approximation and corresponds to the results of Orlandini et al (2002).
The boundary between these two regions is a phase boundary, in the sense that along it the
free energy is non-analytic. This curve is determined by the locus of existence of zM

3 . This is
also the set of points at which zM

1 = zM
2 = zM

3 , i.e. for p = 1/2

b(a, c) = 1 +
(a − 1)(c − 1)

a − c
. (6.8)
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The numerical results of Causo and Whittington (2003) suggest the existence of tricritical
points on the phase boundaries of the quenched problem and the non-analytic points predicted
by the Morita approximation may reflect these tricritical points. We do not know if the phase
boundary predicted by the Morita approximation is reflected by some change in the localized
phase of the quenched problem, but we do not expect a phase boundary in the thermodynamic
limit. Further study is required to verify these observations.

7. The Morita approximation for self-avoiding walks

As was the case for the Motzkin path and Dyck path models, we need to discuss the phase
diagram of the localization of the self-avoiding walk model of homopolymers before we can
discuss the application of the Morita approximation.

The self-avoiding walk model we consider is similar to the directed homopolymer models
considered above, except that the paths are now self-avoiding walks (and so undirected) and
the final vertex is not required to lie in the interface. Using the methods of Madras and
Whittington (2003) one can show that the homopolymer is delocalized in the oil phase when
a � max(c, b) and is delocalized in the water phase when b � max(c, a). This also implies
that for a fixed value of c there is a triple point in the (a, b) plane at (a, b) = (a†, a†) where
a† � c. Note that this is consistent with equation (4.1).

One can also show that the phase boundary between the Doil and the localized phase is
concave in the (log a, log b) plane and monotone increasing with increasing a. The boundary
between Dwater and the localized phase can be obtained by reflection in the line log b = log a.
However, we cannot rule out the possibility that these phase boundaries are horizontal and
vertical lines (respectively). In spite of this, we expect that the phase diagram is qualitatively
the same as those depicted in figure 4.

Irrespective of the details of the phase boundary we still obtain the boundary b = 2 − 1/a

for a � c/(2 − c) which is the same as that found for Dyck and Motzkin paths. This is also
a bound on the location of the phase boundary for the quenched problem (see Orlandini et al
(2002) for a discussion of this point).

If we did know the precise functional form of the homopolymer phase boundary we could
repeat the arguments used in section 6 to find the complete phase boundaries for the Morita
approximation to the quenched average self-avoiding walk model. Without these details
we can only use the horizontal and vertical line bounds on homopolymer phase boundaries
(discussed above). This gives precisely the results of theorem 8 of Madras and Whittington
(2003) which are derived in a different manner.

8. Discussion

In this paper, we have extended the Morita approximation for directed walk models of
copolymer localization to the case where there is an interaction (characterized by a parameter
c) of the monomers with the interface. In this approximation the phase boundaries have a
common point at the origin for c � 1 and are disjoint for c > 1. Such behaviour is expected
for the full quenched problem though the best that has been proved is that for some c1 � 1 the
phase boundaries are disjoint for c > c1 (Madras and Whittington 2003).

When c = 1 the single common point of the two phase boundaries is a non-analytic point
(along the boundary). When c �= 1 the point splits into two non-analytic points, one on each
phase boundary. These points move along the boundaries as c changes. We believe that these
points may be remnants of tricritical points where the order of the transition changes in the full
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quenched problem. In the Morita approximation these points are endpoints of an additional
phase boundary which we do not believe to be present in the quenched problem. This boundary
separates two localized phases. In one of these phases the Morita approximation gives a good
representation of the localized behaviour. In the other, the Morita approximation does not
give a faithful representation of the path properties of the quenched copolymer; although the
copolymer has a positive density of vertices in each of the bulk phases, it has zero density of
vertices in the interface.

In principle these results extend to the self-avoiding walk model of copolymer localization.
We find a mapping between the homopolymer phase boundaries and the bounds predicted by
the Morita approximation. Unfortunately, we know very little about the precise location of the
homopolymer boundaries in the repulsive regime and so we are unable to give good bounds on
the copolymer phase boundaries in this regime. On the other hand, in the attractive regime we
can derive bounds on the location of the phase boundaries which coincide with those derived
by Madras and Whittington (2003). Their results are also based on a Morita approximation,
but are derived by a somewhat different technique.
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Kühn R 1996 Z. Phys. B 100 231–42
Madras N and Whittington S G 2003 J. Phys. A: Math. Gen. 36 923–38
Maritan A, Riva M P and Trovato A 1999 J. Phys. A: Math. Gen. 32 L275–80
Martin R, Causo M S and Whittington S G 2000 J. Phys. A: Math. Gen. 33 7903–18
Mazo R M 1963 J. Chem. Phys. 39 1224–5
Morita T 1964 J. Math. Phys. 5 1401–5
Orlandini E, Rechnitzer A and Whittington S G 2002 J. Phys. A: Math. Gen. 35 7729–51


